第三节 Redis实现分布式锁
应对并发问题时,除了原子操作,Redis 客户端还可以通过加锁的方式,来控制并发写操作对共享数据的修改,从而保证数据的正确性。
Redis 属于分布式系统,当有多个客户端需要争抢锁时,必须要保证,这把锁不能是某个客户端本地的锁。否则的话,其它客户端是无法访问这把锁的,当然也就不能获取这把锁了。
所以,在分布式系统中,当有多个客户端需要获取锁时,我们需要分布式锁。此时,锁是保存在一个共享存储系统中的,可以被多个客户端共享访问和获取。
- Redis 本身可以被多个客户端共享访问,正好就是一个共享存储系统,可以用来保存分布式锁。
- 而且 Redis 的读写性能高,可以应对高并发的锁操作场景。
1、单机上的锁和分布式锁的联系与区别
1-1 单机上的锁
对于在单机上运行的多线程程序来说,锁本身可以用一个变量表示。
- 变量值为 0 时,表示没有线程获取锁;
- 变量值为 1 时,表示已经有线程获取到锁了。
线程调用加锁和释放锁的操作,到底是啥意思呢?
实际上,一个线程调用加锁操作,其实就是检查锁变量值是否为 0。如果是 0,就把锁的变量值设置为 1,表示获取到锁,如果不是 0,就返回错误信息,表示加锁失败,已经有别的线程获取到锁了。而一个线程调用释放锁操作,其实就是将锁变量的值置为 0,以便其它线程可以来获取锁。
acquire_lock(){
if lock == 0
lock = 1
return 1
else
return 0
}
release_lock(){
lock = 0
return 1
}
1-2 分布式锁
和单机上的锁类似,分布式锁同样可以用一个变量来实现。
客户端加锁和释放锁的操作逻辑,也和单机上的加锁和释放锁操作逻辑一致:加锁时同样需要判断锁变量的值,根据锁变量值来判断能否加锁成功;释放锁时需要把锁变量值设置为 0,表明客户端不再持有锁。
和线程在单机上操作锁不同的是,在分布式场景下,锁变量需要由一个共享存储系统来维护,只有这样,多个客户端才可以通过访问共享存储系统来访问锁变量。相应的,加锁和释放锁的操作就变成了读取、判断和设置共享存储系统中的锁变量值。
实现分布式锁的两个要求
- 要求一:分布式锁的加锁和释放锁的过程,涉及多个操作。所以,在实现分布式锁时,我们需要保证这些锁操作的原子性;
- 要求二:共享存储系统保存了锁变量,如果共享存储系统发生故障或宕机,那么客户端也就无法进行锁操作了。在实现分布式锁时,我们需要考虑保证共享存储系统的可靠性,进而保证锁的可靠性。
2、基于单个 Redis 节点实现分布式锁
2-1 锁变量
作为分布式锁实现过程中的共享存储系统,Redis 可以使用键值对来保存锁变量,再接收和处理不同客户端发送的加锁和释放锁的操作请求。
我们要赋予锁变量一个变量名,把这个变量名作为键值对的键,而锁变量的值,则是键值对的值,这样一来,Redis 就能保存锁变量了,客户端也就可以通过 Redis 的命令操作来实现锁操作。
Redis 可以使用一个键值对 lock_key:0
来保存锁变量,其中,键是 lock_key
,也是锁变量的名称,锁变量的初始值是 0。
2-2 加锁操作
在图中,客户端 A 和 C 同时请求加锁。因为 Redis 使用单线程处理请求,所以,即使客户端 A 和 C 同时把加锁请求发给了 Redis,Redis 也会串行处理它们的请求。
我们假设 Redis 先处理客户端 A 的请求,读取 lock_key
的值,发现 lock_key
为 0
,所以,Redis 就把 lock_key
的 value
置为 1
,表示已经加锁了。
紧接着,Redis 处理客户端 C 的请求,此时,Redis 会发现 lock_key 的值已经为 1 了,所以就返回加锁失败的信息。
刚刚说的是加锁的操作,那释放锁该怎么操作呢?其实,释放锁就是直接把锁变量值设置为 0。
这张图片展示了客户端 A 请求释放锁的过程。当客户端 A 持有锁时,锁变量 lock_key
的值为 1。客户端 A 执行释放锁操作后,Redis 将 lock_key
的值置为 0,表明已经没有客户端持有锁了。
因为加锁包含了三个操作(读取锁变量、判断锁变量值以及把锁变量值设置为 1),而这三个操作在执行时需要保证原子性。那怎么保证原子性呢?
要想保证操作的原子性,有两种通用的方法,分别是使用 Redis 的单命令操作和使用 Lua 脚本。那么,在分布式加锁场景下,该怎么应用这两个方法呢?
2-3 分布式加锁场景下的原子性
单命令操作实现加锁操作
首先是 SETNX
命令,它用于设置键值对的值。
具体来说,就是这个命令在执行时会判断键值对是否存在,如果不存在,就设置键值对的值,如果存在,就不做任何设置。
举个例子,如果执行下面的命令时,key 不存在,那么 key 会被创建,并且值会被设置为 value;如果 key 已经存在,SETNX 不做任何赋值操作。
SETNX key value
- 对于释放锁操作来说,可以在执行完业务逻辑后,使用 DEL 命令删除锁变量。不过,你不用担心锁变量被删除后,其他客户端无法请求加锁了。
- 因为 SETNX 命令在执行时,如果要设置的键值对(也就是锁变量)不存在,SETNX 命令会先创建键值对,然后设置它的值。
- 所以,释放锁之后,再有客户端请求加锁时,SETNX 命令会创建保存锁变量的键值对,并设置锁变量的值,完成加锁。
总结来说,可以用 SETNX 和 DEL 命令组合来实现加锁和释放锁操作。下面的伪代码示例显示了锁操作的过程,你可以看下。
// 加锁
SETNX lock_key 1
// 业务逻辑
DO THINGS
// 释放锁
DEL lock_key
使用 SETNX 和 DEL 命令组合实现分布锁,存在两个潜在的风险。
第一个风险是,假如某个客户端在执行了 SETNX 命令、加锁之后,紧接着却在操作共享数据时发生了异常,结果一直没有执行最后的 DEL 命令释放锁。因此,锁就一直被这个客户端持有,其它客户端无法拿到锁,也无法访问共享数据和执行后续操作,这会给业务应用带来影响。
针对这个问题,一个有效的解决方法是,给锁变量设置一个过期时间。
这样一来,即使持有锁的客户端发生了异常,无法主动地释放锁,Redis 也会根据锁变量的过期时间,在锁变量过期后,把它删除。其它客户端在锁变量过期后,就可以重新请求加锁,这就不会出现无法加锁的问题了。
第二个风险。如果客户端 A 执行了 SETNX 命令加锁后,假设客户端 B 执行了 DEL 命令释放锁,此时,客户端 A 的锁就被误释放了。如果客户端 C 正好也在申请加锁,就可以成功获得锁,进而开始操作共享数据。这样一来,客户端 A 和 C 同时在对共享数据进行操作,数据就会被修改错误,这也是业务层不能接受的。
为了应对这个问题,我们需要能区分来自不同客户端的锁操作,具体咋做呢?
- 在使用 SETNX 命令进行加锁的方法中,通过把锁变量值设置为 1 或 0,表示是否加锁成功。
- 1 和 0 只有两种状态,无法表示究竟是哪个客户端进行的锁操作。
- 所以,我们在加锁操作时,可以让每个客户端给锁变量设置一个唯一值,这里的唯一值就可以用来标识当前操作的客户端。
- 在释放锁操作时,客户端需要判断,当前锁变量的值是否和自己的唯一标识相等,只有在相等的情况下,才能释放锁。
2-4 Redis 的 SET 命令
Redis 给 SET 命令提供了类似的选项 NX,用来实现“不存在即设置”。
如果使用了 NX 选项,SET 命令只有在键值对不存在时,才会进行设置,否则不做赋值操作。此外,SET 命令在执行时还可以带上 EX 或 PX 选项,用来设置键值对的过期时间。
举个例子,执行下面的命令时,只有 key 不存在时,SET 才会创建 key,并对 key 进行赋值。另外,key 的存活时间由 seconds 或者 milliseconds 选项值来决定。
SET key value [EX seconds | PX milliseconds] [NX]
有了 SET 命令的 NX 和 EX/PX 选项后,我们就可以用下面的命令来实现加锁操作了。
// 加锁, unique_value作为客户端唯一性的标识
SET lock_key unique_value NX PX 10000
其中,unique_value
是客户端的唯一标识,可以用一个随机生成的字符串来表示,PX 10000
则表示 lock_key
会在 10s
后过期,以免客户端在这期间发生异常而无法释放锁。
因为在加锁操作中,每个客户端都使用了一个唯一标识,所以在释放锁操作时,我们需要判断锁变量的值,是否等于执行释放锁操作的客户端的唯一标识,如下所示:
//释放锁 比较unique_value是否相等,避免误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
这是使用 Lua 脚本(unlock.script
)实现的释放锁操作的伪代码,其中,KEYS[1]
表示 lock_key
,ARGV[1]
是当前客户端的唯一标识,这两个值都是我们在执行 Lua
脚本时作为参数传入的。
最后,我们执行下面的命令,就可以完成锁释放操作了。
redis-cli --eval unlock.script lock_key , unique_value
在释放锁操作中,我们使用了 Lua 脚本,这是因为,释放锁操作的逻辑也包含了读取锁变量、判断值、删除锁变量的多个操作,而 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,从而保证了锁释放操作的原子性。
3、基于多个 Redis 节点实现高可靠的分布式锁
为了避免 Redis 实例故障而导致的锁无法工作的问题,Redis 的开发者 Antirez 提出了分布式锁算法 Redlock。
Redlock 算法的基本思路,是让客户端和多个独立的 Redis 实例依次请求加锁,如果客户端能够和半数以上的实例成功地完成加锁操作,那么我们就认为,客户端成功地获得分布式锁了,否则加锁失败。
这样一来,即使有单个 Redis 实例发生故障,因为锁变量在其它实例上也有保存,所以,客户端仍然可以正常地进行锁操作,锁变量并不会丢失。
Redlock 算法的执行步骤。Redlock 算法的实现需要有 N 个独立的 Redis 实例。接下来,我们可以分成 3 步来完成加锁操作。
第一步是,客户端获取当前时间。
第二步是,客户端按顺序依次向 N 个 Redis 实例执行加锁操作。
这里的加锁操作和在单实例上执行的加锁操作一样,使用 SET 命令,带上 NX,EX/PX 选项,以及带上客户端的唯一标识。当然,如果某个 Redis 实例发生故障了,为了保证在这种情况下,Redlock 算法能够继续运行,我们需要给加锁操作设置一个超时时间
如果客户端在和一个 Redis 实例请求加锁时,一直到超时都没有成功,那么此时,客户端会和下一个 Redis 实例继续请求加锁。加锁操作的超时时间需要远远地小于锁的有效时间,一般也就是设置为几十毫秒。
第三步是,一旦客户端完成了和所有 Redis 实例的加锁操作,客户端就要计算整个加锁过程的总耗时。
客户端只有在满足下面的这两个条件时,才能认为是加锁成功。
- 条件一:客户端从超过半数
(大于等于 N/2+1)
的 Redis 实例上成功获取到了锁; - 条件二:客户端获取锁的总耗时没有超过锁的有效时间。
在满足了这两个条件后,我们需要重新计算这把锁的有效时间,计算的结果是锁的最初有效时间减去客户端为获取锁的总耗时。
如果锁的有效时间已经来不及完成共享数据的操作了,我们可以释放锁,以免出现还没完成数据操作,锁就过期了的情况。
在 Redlock 算法中,释放锁的操作和在单实例上释放锁的操作一样,只要执行释放锁的 Lua 脚本就可以了。这样一来,只要 N 个 Redis 实例中的半数以上实例能正常工作,就能保证分布式锁的正常工作了。
4、本节总结
分布式锁是由共享存储系统维护的变量,多个客户端可以向共享存储系统发送命令进行加锁或释放锁操作。Redis 作为一个共享存储系统,可以用来实现分布式锁。
在基于单个 Redis 实例实现分布式锁时,对于加锁操作,我们需要满足三个条件。
- 加锁包括了读取锁变量、检查锁变量值和设置锁变量值三个操作,但需要以原子操作的方式完成,所以,我们使用 SET 命令带上 NX 选项来实现加锁;
- 锁变量需要设置过期时间,以免客户端拿到锁后发生异常,导致锁一直无法释放,所以,我们在 SET 命令执行时加上 EX/PX 选项,设置其过期时间;
- 锁变量的值需要能区分来自不同客户端的加锁操作,以免在释放锁时,出现误释放操作,所以,我们使用 SET 命令设置锁变量值时,每个客户端设置的值是一个唯一值,用于标识客户端。
和加锁类似,释放锁也包含了读取锁变量值、判断锁变量值和删除锁变量三个操作,不过,我们无法使用单个命令来实现,所以,我们可以采用 Lua 脚本执行释放锁操作,通过 Redis 原子性地执行 Lua 脚本,来保证释放锁操作的原子性。
不过,基于单个 Redis 实例实现分布式锁时,会面临实例异常或崩溃的情况,这会导致实例无法提供锁操作,正因为此,Redis 也提供了 Redlock 算法,用来实现基于多个实例的分布式锁。
这样一来,锁变量由多个实例维护,即使有实例发生了故障,锁变量仍然是存在的,客户端还是可以完成锁操作