跳转至

第二节 缓存满后的替换策略

Redis 缓存使用内存来保存数据,避免业务应用从后端数据库中读取数据,可以提升应用的响应速度。那么,如果我们把所有要访问的数据都放入缓存,这样做的性价比反而不高。

举个例子吧。MySQL 中有 1TB 的数据,如果我们使用 Redis 把这 1TB 的数据都缓存起来,虽然应用都能在内存中访问数据了,但是,这样配置并不合理,因为性价比很低。一方面,1TB 内存的价格大约是 3.5 万元,而 1TB 磁盘的价格大约是 1000 元。

另一方面,数据访问都是有局部性的,也就是我们通常所说的“八二原理”,80% 的请求实际只访问了 20% 的数据。所以,用 1TB 的内存做缓存,并没有必要。

为了保证较高的性价比,缓存的空间容量必然要小于后端数据库的数据总量。不过,内存大小毕竟有限,随着要缓存的数据量越来越大,有限的缓存空间不可避免地会被写满。

解决这个问题就涉及到缓存系统的一个重要机制,即缓存数据的淘汰机制

数据淘汰机制包括两步:

  • 第一,根据一定的策略,筛选出对应用访问来说“不重要”的数据;
  • 第二,将这些数据从缓存中删除,为新来的数据腾出空间,’

1、设置多大的缓存容量合适?

缓存容量设置得是否合理,会直接影响到使用缓存的性价比

Alt Image Text

1-1 长尾效应

蓝线代表了“八二原理”表示的数据局部性,而红线则表示在当前应用负载下,数据局部性的变化。

蓝线。它表示的就是“八二原理”,有 20% 的数据贡献了 80% 的访问了,而剩余的数据虽然体量很大,但只贡献了 20% 的访问量。这 80% 的数据在访问量上就形成了一条长长的尾巴,我们也称为“长尾效应”。

所以,如果按照“八二原理”来设置缓存空间容量,也就是把缓存空间容量设置为总数据量的 20% 的话,就有可能拦截到 80% 的访问。

为什么说是“有可能”呢?

这是因为,“八二原理”是对大量实际应用的数据访问情况做了统计后,得出的一个统计学意义上的数据量和访问量的比例。具体到某一个应用来说,数据访问的规律会和具体的业务场景有关。对于最常被访问的 20% 的数据来说,它们贡献的访问量,既有可能超过 80%,也有可能不到 80%。

一个电商商品的场景。

  • 一方面,在商品促销时,热门商品的信息可能只占到总商品数据信息量的 5%,而这些商品信息承载的可能是超过 90% 的访问请求。这时,我们只要缓存这 5% 的数据,就能获得很好的性能收益
  • 另一方面,如果业务应用要对所有商品信息进行查询统计,这时候,即使按照“八二原理”缓存了 20% 的商品数据,也不能获得很好的访问性能,因为 80% 的数据仍然需要从后端数据库中获取。

1-2 重尾效应

在这条红线上,80% 的数据贡献的访问量,超过了传统的长尾效应中 80% 数据能贡献的访问量。

原因在于,用户的个性化需求越来越多,在一个业务应用中,不同用户访问的内容可能差别很大,所以,用户请求的数据和它们贡献的访问量比例,不再具备长尾效应中的“八二原理”分布特征了。

也就是说,20% 的数据可能贡献不了 80% 的访问,而剩余的 80% 数据反而贡献了更多的访问量,我们称之为重尾效应。

正是因为 20% 的数据不一定能贡献 80% 的访问量,我们不能简单地按照“总数据量的 20%”来设置缓存最大空间容量。

在实践过程中,我看到过的缓存容量占总数据量的比例,从 5% 到 40% 的都有。这个容量规划不能一概而论,是需要结合应用数据实际访问特征和成本开销来综合考虑的

1-3 系统的设计

系统的设计选择是一个权衡的过程:

  • 大容量缓存是能带来性能加速的收益,但是成本也会更高,而小容量缓存不一定就起不到加速访问的效果。
  • 一般来说,我会建议把缓存容量设置为总数据量的 15% 到 30%,兼顾访问性能和内存空间开销。

对于 Redis 来说,一旦确定了缓存最大容量,比如 4GB,你就可以使用下面这个命令来设定缓存的大小了:

CONFIG SET maxmemory 4gb

不过,缓存被写满是不可避免的。即使你精挑细选,确定了缓存容量,还是要面对缓存写满时的替换操作。缓存替换需要解决两个问题:决定淘汰哪些数据,如何处理那些被淘汰的数据。

2、Redis 缓存有哪些淘汰策略?

2-1 数据淘汰的策略

Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略。

我们可以按照是否会进行数据淘汰把它们分成两类:

  • 不进行数据淘汰的策略,只有 noeviction 这一种。
  • 会进行淘汰的 7 种其他策略。

会进行淘汰的 7 种策略,我们可以再进一步根据淘汰候选数据集的范围把它们分成两类:

  • 在设置了过期时间的数据中进行淘汰,包括 volatile-randomvolatile-ttlvolatile-lruvolatile-lfu(Redis 4.0 后新增)四种。
  • 在所有数据范围内进行淘汰,包括 allkeys-lruallkeys-randomallkeys-lfu(Redis 4.0 后新增)三种。

Alt Image Text

下面我就来具体解释下各个策略。

2-2 noeviction 策略

默认情况下,Redis在使用的内存空间超过 maxmemory 值时,并不会淘汰数据,也就是设定的 noeviction 策略

对应到 Redis 缓存,也就是指,一旦缓存被写满了,再有写请求来时,Redis 不再提供服务,而是直接返回错误。

Redis 用作缓存时,实际的数据集通常都是大于缓存容量的,总会有新的数据要写入缓存,这个策略本身不淘汰数据,也就不会腾出新的缓存空间,我们不把它用在 Redis 缓存中。

2-3 volatile-random、volatile-ttl、volatile-lru 和 volatile-lfu

它们筛选的候选数据范围,被限制在已经设置了过期时间的键值对上。也正因为此,即使缓存没有写满,这些数据如果过期了,也会被删除

例如,我们使用 EXPIRE 命令对一批键值对设置了过期时间后,无论是这些键值对的过期时间是快到了,还是 Redis 的内存使用量达到了 maxmemory 阈值

Redis 都会进一步按照 volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这四种策略的具体筛选规则进行淘汰。

  • volatile-ttl 在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
  • volatile-random 就像它的名称一样,在设置了过期时间的键值对中,进行随机删除
  • volatile-lru 会使用LRU 算法筛选设置了过期时间的键值对
  • volatile-lfu会使用 LFU 算法选择设置了过期时间的键值对。

volatile-ttlvolatile-random 筛选规则比较简单,而 volatile-lru 因为涉及了 LRU 算法,所以我会在分析 allkeys-lru 策略时再详细解释。 volatile-lfu 使用了 LFU 算法,

相对于 volatile-ttlvolatile-randomvolatile-lruvolatile-lfu 这四种策略淘汰的是设置了过期时间的数据,

2-4 allkeys-lruallkeys-randomallkeys-lfu

allkeys-lruallkeys-randomallkeys-lfu 这三种淘汰策略的备选淘汰数据范围,就扩大到了所有键值对,无论这些键值对是否设置了过期时间。它们筛选数据进行淘汰的规则是:

  • allkeys-random 策略,从所有键值对中随机选择并删除数据;
  • allkeys-lru 策略,使用 LRU 算法在所有数据中进行筛选。
  • allkeys-lfu 策略,使用 LFU 算法在所有数据中进行筛选。

这也就是说,如果一个键值对被删除策略选中了,即使它的过期时间还没到,也需要被删除。当然,如果它的过期时间到了但未被策略选中,同样也会被删除。

2-5 LRU 算法

LRU 算法的全称是 Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中

LRU 会把所有的数据组织成一个链表,链表的头和尾分别表示 MRU 端和 LRU 端,分别代表最近最常使用的数据和最近最不常用的数据。我们看一个例子。

Alt Image Text

  • 我们现在有数据 6、3、9、20、5。
  • 如果数据 20 和 3 被先后访问,它们都会从现有的链表位置移到 MRU 端,而链表中在它们之前的数据则相应地往后移一位。
  • 因为,LRU 算法选择删除数据时,都是从 LRU 端开始,所以把刚刚被访问的数据移到 MRU 端,就可以让它们尽可能地留在缓存中。

如果有一个新数据 15 要被写入缓存,但此时已经没有缓存空间了,也就是链表没有空余位置了,那么,LRU 算法做两件事:

  • 数据 15 是刚被访问的,所以它会被放到 MRU 端;
  • 算法把 LRU 端的数据 5 从缓存中删除,相应的链表中就没有数据 5 的记录了。

其实,LRU 算法背后的想法非常朴素:

  • 它认为刚刚被访问的数据,肯定还会被再次访问,所以就把它放在 MRU 端;
  • 长久不访问的数据,肯定就不会再被访问了,所以就让它逐渐后移到 LRU 端,在缓存满时,就优先删除它。

LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销

当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。

当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能

所以,在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。

  • 具体来说,Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构 RedisObject 中的 lru 字段记录)。
  • 然后,Redis 在决定淘汰的数据时,第一次会随机选出 N 个数据,把它们作为一个候选集合。
  • 接下来,Redis 会比较这 N 个数据的 lru 字段,把 lru 字段值最小的数据从缓存中淘汰出去

Redis 提供了一个配置参数 maxmemory-samples,这个参数就是 Redis 选出的数据个数 N。例如,我们执行如下命令,可以让 Redis 选出 100 个数据作为候选数据集:

CONFIG SET maxmemory-samples 100

当需要再次淘汰数据时,Redis 需要挑选数据进入第一次淘汰时创建的候选集合。

这儿的挑选标准是:能进入候选集合的数据的 lru 字段值必须小于候选集合中最小的lru

当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了 maxmemory-samples,Redis 就把候选数据集中 lru 字段值最小的数据淘汰出去。

这样一来,Redis 缓存不用为所有的数据维护一个大链表,也不用在每次数据访问时都移动链表项,提升了缓存的性能。

2-6 淘汰策略三个建议

  • 优先使用 allkeys-lru 策略。这样,可以充分利用 LRU 这一经典缓存算法的优势,把最近最常访问的数据留在缓存中,提升应用的访问性能。如果你的业务数据中有明显的冷热数据区分,我建议你使用 allkeys-lru 策略。
  • 如果业务应用中的数据访问频率相差不大,没有明显的冷热数据区分,建议使用 allkeys-random 策略,随机选择淘汰的数据就行
  • 如果你的业务中有置顶的需求,比如置顶新闻、置顶视频,那么,可以使用 volatile-lru 策略,同时不给这些置顶数据设置过期时间。这样一来,这些需要置顶的数据一直不会被删除,而其他数据会在过期时根据 LRU 规则进行筛选。

3、如何处理被淘汰的数据?

一般来说,一旦被淘汰的数据选定后,如果这个数据是干净数据,那么我们就直接删除;如果这个数据是脏数据,我们需要把它写回数据库,如下图所示:

Alt Image Text

那怎么判断一个数据到底是干净的还是脏的呢?

干净数据和脏数据的区别就在于,和最初从后端数据库里读取时的值相比,有没有被修改过

  • 干净数据一直没有被修改,所以后端数据库里的数据也是最新值。在替换时,它可以被直接删除。

而脏数据就是曾经被修改过的,已经和后端数据库中保存的数据不一致了。此时,如果不把脏数据写回到数据库中,这个数据的最新值就丢失了,就会影响应用的正常使用。

这么一来,缓存替换既腾出了缓

我们在使用 Redis 缓存时,如果数据被修改了,需要在数据修改时就将它写回数据库。否则,这个脏数据被淘汰时,会被 Redis 删除,而数据库里也没有最新的数据了。

4、本节小结

缓存替换时的数据淘汰策略,以及被淘汰数据的处理方法。

Redis 4.0 版本以后一共提供了 8 种数据淘汰策略,从淘汰数据的候选集范围来看,我们有两种候选范围:一种是所有数据都是候选集,一种是设置了过期时间的数据是候选集。

另外,无论是面向哪种候选数据集进行淘汰数据选择,我们都有三种策略,分别是随机选择,根据 LRU 算法选择,以及根据 LFU 算法选择

当然,当面向设置了过期时间的数据集选择淘汰数据时,我们还可以根据数据离过期时间的远近来决定。

一般来说,缓存系统对于选定的被淘汰数据,会根据其是干净数据还是脏数据,选择直接删除还是写回数据库

但是,在 Redis 中,被淘汰数据无论干净与否都会被删除,所以,这是我们在使用 Redis 缓存时要特别注意的:当数据修改成为脏数据时,需要在数据库中也把数据修改过来。

先根据是否有始终会被频繁访问的数据(例如置顶消息),来选择淘汰数据的候选集,也就是决定是针对所有数据进行淘汰,还是针对设置了过期时间的数据进行淘汰。

候选数据集范围选定后,建议优先使用 LRU 算法,也就是,allkeys-lru 或 volatile-lru 策略。

合实际应用的数据总量、热数据的体量,以及成本预算,把缓存空间大小设置在总数据量的 15% 到 30% 这个区间就可以。