跳转至

第五节 Redis宕机,Redis如何实现快速恢复RDB

1、什么是内存快照

Redis 避免数据丢失的 AOF 方法。这个方法的好处,是每次执行只需要记录操作命令,需要持久化的数据量不大。一般而言,只要你采用的不是 always 的持久化策略,就不会对性能造成太大影响。

但是,也正因为记录的是操作命令,而不是实际的数据,

  • 所以,用 AOF 方法进行故障恢复的时候,需要逐一把操作日志都执行一遍。如果操作日志非常多,Redis 就会恢复得很缓慢,影响到正常使用

还有没有既可以保证可靠性,还能在宕机时实现快速恢复的其他方法呢? 内存快照

对 Redis 来说,它实现类似照片记录效果的方式,就是把某一时刻的状态以文件的形式写到磁盘上,也就是快照。

这样一来,即使宕机,快照文件也不会丢失,数据的可靠性也就得到了保证。这个快照文件就称为 RDB 文件,其中,RDB 就是 Redis DataBase 的缩写

和 AOF 相比,RDB 记录的是某一时刻的数据,并不是操作,所以,在做数据恢复时,我们可以直接把 RDB 文件读入内存,很快地完成恢复。

我们还要考虑两个关键问题:

  • 对哪些数据做快照?这关系到快照的执行效率问题;
  • 做快照时,数据还能被增删改吗?这关系到 Redis 是否被阻塞,能否同时正常处理请求。

2、给哪些内存数据做快照?

Redis 的数据都在内存中,为了提供所有数据的可靠性保证,它执行的是全量快照,也就是说,把内存中的所有数据都记录到磁盘中,这样做的好处是,一次性记录了所有数据,一个都不少

给内存的全量数据做快照,把它们全部写入磁盘也会花费很多时间。而且,全量数据越多,RDB 文件就越大,往磁盘上写数据的时间开销就越大。

对于 Redis 而言,它的单线程模型就决定了,我们要尽量避免所有会阻塞主线程的操作

2-1 RDB 文件的生成是否会阻塞主线程?

Redis 提供了两个命令来生成 RDB 文件,分别是 savebgsave

  • save:在主线程中执行,会导致阻塞;
  • bgsave:创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是 Redis RDB 文件生成的默认配置。

我们就可以通过 bgsave 命令来执行全量快照,这既提供了数据的可靠性保证,也避免了对 Redis 的性能影响

3、快照时数据能修改吗?

对于内存快照而言,我们不希望数据“动”。

举个例子。我们在时刻 t 给内存做快照,假设内存数据量是 4GB,磁盘的写入带宽是 0.2GB/s,简单来说,至少需要 20s(4/0.2 = 20)才能做完。

如果在时刻t+5s 时,一个还没有被写入磁盘的内存数据 A,被修改成了A’,那么就会破坏快照的完整性,因为 A’不是时刻 t 时的状态。因此,和拍照类似,我们在做快照时也不希望数据“动”,也就是不能被修改。

但是,如果快照执行期间数据不能被修改,是会有潜在问题的。对于刚刚的例子来说,在做快照的 20s 时间里,如果这 4GB 的数据都不能被修改,Redis 就不能处理对这些数据的写操作,那无疑就会给业务服务造成巨大的影响。

你可能会想到,可以用 bgsave 避免阻塞啊:

避免阻塞和正常处理写操作并不是一回事。此时,主线程的确没有阻塞,可以正常接收请求,但是,为了保证快照完整性,它只能处理读操作,因为不能修改正在执行快照的数据。

RDB采用写时复制(COW,copy on write)策略。

主线程如果都是读取操作,那么子线程不需要复制数据块。

如果主线程的某块数据有修改, 那么子线程需要复制数据块,从而不会影响主线程的修改操作。

快照而暂停写操作,肯定是不能接受的。所以这个时候,Redis 就会借助操作系统提供的写时复制技术(Copy-On-Write, COW),在执行快照的同时,正常处理写操作

bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。

  • 如果主线程对这些数据也都是读操作(例如图中的键值对 A),那么,主线程和 bgsave 子进程相互不影响。
  • 如果主线程要修改一块数据(例如图中的键值对 C),那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据

Alt Image Text

这既保证了快照的完整性,也允许主线程同时对数据进行修改,避免了对正常业务的影响。

4、多久做一次快照

4-1 连拍全量快照带来的问题

对于快照来说,所谓“连拍”就是指连续地做快照。这样一来,快照的间隔时间变得很短,即使某一时刻发生宕机了,因为上一时刻快照刚执行,丢失的数据也不会太多。但是,这其中的快照间隔时间就很关键了。

如下图所示,我们先在 T0 时刻做了一次快照,然后又在 T0+t时刻做了一次快照,在这期间,数据块59被修改了。如果在 t 这段时间内,机器宕机了,那么,只能按照 T0 时刻的快照进行恢复。

此时,数据块 5 和 9 的修改值因为没有快照记录,就无法恢复了。

Alt Image Text

要想尽可能恢复数据,t 值就要尽可能小,t 越小,就越像“连拍”

虽然 bgsave 执行时不阻塞主线程,但是,如果频繁地执行全量快照,也会带来两方面的开销。

  • 一方面,频繁将全量数据写入磁盘,会给磁盘带来很大压力,多个快照竞争有限的磁盘带宽,前一个快照还没有做完,后一个又开始做了,容易造成恶性循环。
  • 另一方面,bgsave 子进程需要通过 fork 操作从主线程创建出来。虽然,子进程在创建后不会再阻塞主线程,但是,fork 这个创建过程本身会阻塞主线程,而且主线程的内存越大,阻塞时间越长如果频繁 fork 出 bgsave 子进程,这就会频繁阻塞主线程了

fork操作执行时,内核需要给子进程拷贝主线程的页表。如果主线程的内存大,页表也相应大,拷贝页表耗时长,会阻塞主线程。

4-2 增量快照

我们可以做增量快照,所谓增量快照,就是指,做了一次全量快照后,后续的快照只对修改的数据进行快照记录,这样可以避免每次全量快照的开销。

  • 在第一次做完全量快照后,T1 和 T2 时刻如果再做快照,我们只需要将被修改的数据写入快照文件就行。
  • 但是,这么做的前提是,我们需要记住哪些数据被修改了
  • “记住”功能,它需要我们使用额外的元数据信息去记录哪些数据被修改了,这会带来额外的空间开销问题

Alt Image Text

增量快照带来的问题

  • 如果我们对每一个键值对的修改,都做个记录,那么,如果有 1 万个被修改的键值对,我们就需要有 1 万条额外的记录。
  • 而且,有的时候,键值对非常小,比如只有 32 字节,而记录它被修改的元数据信息,可能就需要 8 字节,这样的画,为了“记住”修改,引入的额外空间开销比较大。这对于内存资源宝贵的 Redis 来说,有些得不偿失。

虽然跟 AOF 相比,快照的恢复速度快,但是,快照的频率不好把握,如果频率太低,两次快照间一旦宕机,就可能有比较多的数据丢失。如果频率太高,又会产生额外开销

5、混合使用 AOF 日志和内存快照

Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。

简单来说,内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作。

快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且,AOF 日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。

Alt Image Text

T1 和 T2 时刻的修改,用 AOF 日志记录,等到第二次做全量快照时,就可以清空 AOF 日志,因为此时的修改都已经记录到快照中了,恢复时就不再用日志了。

6、本节小结

  • 们学习了 Redis 用于避免数据丢失的内存快照方法。这个方法的优势在于,可以快速恢复数据库,也就是只需要把 RDB 文件直接读入内存,这就避免了 AOF 需要顺序、逐一重新执行操作命令带来的低效性能问题。
  • Redis 设计了 bgsave 和写时复制方式,尽可能减少了内存快照对正常读写的影响,但是,频繁快照仍然是不太能接受的。而混合使用 RDB 和 AOF,以较小的性能开销保证数据可靠性和性能。

6-1 关于 AOF 和 RDB 的选择问题,

三点建议:

  • 数据不能丢失时,内存快照和 AOF 的混合使用是一个很好的选择;
  • 如果允许分钟级别的数据丢失,可以只使用 RDB;
  • 如果只用 AOF,优先使用 everysec 的配置选项,因为它在可靠性和性能之间取了一个平衡。

6-2 每节一问

使用一个 2 核 CPU、4GB 内存、500GB 磁盘的云主机运行 Redis,Redis 数据库的数据量大小差不多是 2GB,我们使用了 RDB 做持久化保证。

当时 Redis 的运行负载以修改操作为主,写读比例差不多在 8:2 左右,也就是说,如果有 100 个请求,80 个请求执行的是修改操作。你觉得,在这个场景下,用 RDB 做持久化有什么风险吗?你能帮着一起分析分析吗?

答案

  1. 内存资源风险:Redis fork子进程做RDB持久化,由于写的比例为80%,那么在持久化过程中,“写实复制”会重新分配整个实例80%的内存副本,大约需要重新分配1.6GB内存空间,这样整个系统的内存使用接近饱和,如果此时父进程又有大量新key写入,很快机器内存就会被吃光,如果机器开启了Swap机制,那么Redis会有一部分数据被换到磁盘上,当Redis访问这部分在磁盘上的数据时,性能会急剧下降,已经达不到高性能的标准(可以理解为武功被废)。如果机器没有开启Swap,会直接触发OOM,父子进程会面临被系统kill掉的风险。
  2. CPU资源风险:虽然子进程在做RDB持久化,但生成RDB快照过程会消耗大量的CPU资源,虽然Redis处理处理请求是单线程的,但Redis Server还有其他线程在后台工作,例如AOF每秒刷盘、异步关闭文件描述符这些操作。由于机器只有2核CPU,这也就意味着父进程占用了超过一半的CPU资源,此时子进程做RDB持久化,可能会产生CPU竞争,导致的结果就是父进程处理请求延迟增大,子进程生成RDB快照的时间也会变长,整个Redis Server性能下降。

6-3 到底是主进程还是主线程

Redis启动后本身是一个进程,它的主体工作(接收请求、服务请求读写数据)也是在这个进程中完成的,称Redis为主进程是可以的

同时,Redis这个进程属于单线程的进程,也就是说进程主体工作没有用多个线程来运行,所以我一般把它也称为主线程,突显它的单线程模式

有的程序启动后,会在进程中启动多个线程来处理工作,这个时候我就不会称它为主线程了,因为没有一个线程是单独做主要工作的。