第五节 协程快速地实现高并发服务:Coroutine
如果你需要访问多个服务来完成一个请求的处理,比如实现文件上传功能时,
- 首先访问 Redis 缓存,验证用户是否登陆,
- 再接收 HTTP 消息中的 body 并保存在磁盘上,
- 最后把文件路径等信息写入 MySQL 数据库中
用阻塞 API 写同步代码最简单,但一个线程同一时间只能处理一个请求,有限的线程数导致无法实现万级别的并发连接,过多的线程切换也抢走了 CPU 的时间,从而降低了每秒能够处理的请求数量。
为了达到高并发,可能会选择一个异步框架,用非阻塞 API 把业务逻辑打乱到多个回调函数,通过多路复用实现高并发,然而,由于业务代码过度关注并发细节,需要维护很多中间状态,不但 Bug 率会很高,项目的开发速度也上不去,产品及时上线存在风险。
如果想兼顾开发效率,又能保证高并发,协程就是最好的选择。它可以在保持异步化运行机制的同时,用同步方式写代码,这在实现高并发的同时,缩短了开发周期,是高性能服务未来的发展方向。
协程就是用户态的线程
1、如何通过切换请求实现高并发?
1-1 线程&进程的高并发
主机上资源有限,一颗 CPU、一块磁盘、一张网卡,如何同时服务上百个请求呢?
多进程模式是最初的解决方案。内核把 CPU 的执行时间切分成许多时间片(timeslice),比如 1 秒钟可以切分为 100 个 10 毫秒的时间片,每个时间片再分发给不同的进程,通常,每个进程需要多个时间片才能完成一个请求。
虽然微观上,比如说就这 10 毫秒时间 CPU 只能执行一个进程,但宏观上 1 秒钟执行了 100 个时间片,于是每个时间片所属进程中的请求也得到了执行,这就实现了请求的并发执行。
每个进程的内存空间都是独立的,这样用多进程实现并发就有两个缺点:
- 一是内核的管理成本高,
- 二是无法简单地通过内存同步数据,很不方便。
于是,多线程模式就出现了,多线程模式通过共享内存地址空间,解决了这两个问题。
共享地址空间虽然可以方便地共享对象,但这也导致一个问题,那就是任何一个线程出错时,进程中的所有线程会跟着一起崩溃。这也是如 Nginx 等强调稳定性的服务坚持使用多进程模式的原因。
无论基于多进程还是多线程,都难以实现高并发,这由两个原因所致。
- 首先,单个线程消耗的内存过多,比如,64 位的 Linux 为每个线程的栈分配了 8MB 的内存,还预分配了 64MB 的内存作为堆内存池 所以,我们没有足够的内存去开启几万个线程实现并发。
- 切换请求是内核通过切换线程实现的,什么时候会切换线程呢?
- 不只时间片用尽,当调用阻塞方法时,内核为了让 CPU 充分工作,也会切换到其他线程执行。一次上下文切换的成本在几十纳秒到几微秒间,当线程繁忙且数量众多时,这些切换会消耗绝大部分的 CPU 运算能力。
2 个线程间的切换方式。
1-2 怎么才能实现高并发呢?
把上图中本来由内核实现的请求切换工作,交由用户态的代码来完成就可以了。
异步化编程通过应用层代码实现了请求切换,降低了切换成本和内存占用空间。
异步化依赖于 IO 多路复用机制,比如 Linux 的 epoll 或者 Windows 上的 iocp,同时,必须把阻塞方法更改为非阻塞方法,才能避免内核切换带来的巨大消耗。Nginx、Redis 等高性能服务都依赖异步化实现了百万量级的并发。
下图描述了异步 IO 的非阻塞读和异步框架结合后,是如何切换请求的。
然而,写异步化代码很容易出错。因为所有阻塞函数,都需要通过非阻塞的系统调用拆分成两个函数
有没有办法既享受到异步化带来的高并发,又可以使用阻塞函数写同步化代码呢
协程可以做到,它在异步化之上包了一层外衣,兼顾了开发效率与运行效率。
2、协程是如何实现高并发的?
协程与异步编程相似的地方在于,它们必须使用非阻塞的系统调用与内核交互,把切换请求的权力牢牢掌握在用户态的代码中。
但不同的地方在于,协程把异步化中的两段函数,封装为一个阻塞的协程函数。
这个函数执行时,会使调用它的协程无感知地放弃执行权,由协程框架切换到其他就绪的协程继续执行。当这个函数的结果满足后,协程框架再选择合适的时机,切换回它所在的协程继续执行。
2-1 那协程的切换是如何完成的呢?
用户态的代码切换协程,与内核切换线程的原理是一样的
内核通过管理 CPU 的寄存器来切换线程,我们以最重要的栈寄存器和指令寄存器为例,看看协程切换时如何切换程序指令与内存。
协程就是用户态的线程。
然而,为了保证所有切换都在用户态进行,协程必须重新封装所有的阻塞系统调用,否则,一旦协程触发了线程切换,会导致这个线程进入休眠状态,进而其上的所有协程都得不到执行。
比如,普通的 sleep 函数会让当前线程休眠,由内核来唤醒线程,而协程化改造后,sleep 只会让当前协程休眠,由协程框架在指定时间后唤醒协程。再比如,线程间的互斥锁是使用信号量实现的,而信号量也会导致线程休眠,协程化改造互斥锁后,同样由框架来协调、同步各协程的执行。
所以,协程的高性能,建立在切换必须由用户态代码完成之上,这要求协程生态是完整的,要尽量覆盖常见的组件。
比如 MySQL 官方提供的客户端 SDK,它使用了阻塞 socket 做网络访问,会导致线程休眠,必须用非阻塞 socket 把 SDK 改造为协程函数后,才能在协程中使用。
当然,并不是所有的函数都能用协程改造。比如异步 IO,它虽然是非阻塞的,但无法使用 PageCache,降低了系统吞吐量。如果使用缓存 IO 读文件,在没有命中 PageCache 时是可能发生阻塞的。
2-2 面对多核系统,也需要协程与线程配合工作
实际上,面对多核系统,也需要协程与线程配合工作。因为协程的载体是线程,而一个线程同一时间只能使用一颗 CPU,所以通过开启更多的线程,将所有协程分布在这些线程中,就能充分使用 CPU 资源。
除此之外,为了让协程获得更多的 CPU 时间,还可以设置所在线程的优先级,比如 Linux 下把线程的优先级设置到 -20
,就可以每次获得更长的时间片。
CPU 缓存对程序性能的影响,为了减少 CPU 缓存失效的比例,还可以把线程绑定到某个 CPU 上,增加协程执行时命中 CPU 缓存的机率。
3、本节小结
协程融合了多线程与异步化编程的优点,既保证了开发效率,也提升了运行效率。
有限的硬件资源下,多线程通过微观上时间片的切换,实现了同时服务上百个用户的能力。多线程的开发成本虽然低,但内存消耗大,切换次数过多,无法实现高并发。
异步编程方式通过非阻塞系统调用和多路复用,把原本属于内核的请求切换能力,放在用户态的代码中执行。这样,不仅减少了每个请求的内存消耗,也降低了切换请求的成本,最终实现了高并发。然而,异步编程违反了代码的内聚性,还需要业务代码关注并发细节,开发成本很高。
协程参考内核通过 CPU 寄存器切换线程的方法,在用户态代码中实现了协程的切换,既降低了切换请求的成本,也使得协程中的业务代码不用关注自己何时被挂起,何时被执行。相比异步编程中要维护一堆数据结构表示中间状态,协程直接用代码表示状态,大大提升了开发效率。
在协程中调用的所有 API,都需要做非阻塞的协程化改造。优秀的协程生态下,常用服务都有对应的协程 SDK,方便业务代码使用。开发高并发服务时,与 IO 多路复用结合的协程框架可以与这些 SDK 配合,自动挂起、切换协程,进一步提升开发效率。
协程并不是完全与线程无关,首先线程可以帮助协程充分使用多核 CPU 的计算力,其次,遇到无法协程化、会导致内核切换的阻塞函数,或者计算太密集从而长时间占用 CPU 的任务,还是要放在独立的线程中执行,以防止它影响所有协程的执行。