跳转至

第二节 在 K8S 上搭建 EFK 日志收集系统

Nowadays, Kubernetes 中比较流行的日志收集解决方案是 ElasticsearchFluentdKibana(EFK) 技术栈,也是官方现在比较推荐的一种方案。

Elasticsearch 是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大量日志数据,也可用于搜索许多不同类型的文档。

Elasticsearch 通常与 Kibana 一起部署,KibanaElasticsearch 的一个功能强大的数据可视化 DashboardKibana 允许你通过 web 界面来浏览 Elasticsearch 日志数据。

Fluentd是一个流行的开源数据收集器,我们将在 Kubernetes 集群节点上安装 Fluentd,通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。

1、创建 Elasticsearch 集群

在创建 Elasticsearch 集群之前,我们先创建一个命名空间,我们将在其中安装所有日志相关的资源对象。

新建一个 kube-logging.yaml 文件:

apiVersion: v1
kind: Namespace
metadata:
  name: logging

然后通过 kubectl 创建该资源清单,创建一个名为 loggingnamespace

$ kubectl create -f kube-logging.yaml
namespace/logging created
$ kubectl get ns
NAME           STATUS    AGE
default        Active    244d
istio-system   Active    100d
kube-ops       Active    179d
kube-public    Active    244d
kube-system    Active    244d
logging        Active    4h
monitoring     Active    35d

现在创建了一个命名空间来存放我们的日志相关资源,接下来可以部署 EFK 相关组件,首先开始部署一个3节点的 Elasticsearch 集群。

这里我们使用3个 Elasticsearch Pod 来避免高可用下多节点集群中出现的“脑裂”问题,当一个或多个节点无法与其他节点通信时会产生“脑裂”,可能会出现几个主节点。

Elasticsearch 集群脑裂问题

1-1 一个关键点是您应该设在参数上

discover.zen.minimum_master_nodes=N/2+1

其中 NElasticsearch 集群中符合主节点的节点数,比如我们这里3个节点,意味着N应该设置为2。 这样,如果一个节点暂时与集群断开连接,则另外两个节点可以选择一个新的主节点,并且集群可以在最后一个节点尝试重新加入时继续运行,在扩展 Elasticsearch 集群时,一定要记住这个参数。

首先创建一个名为 elasticsearch 的无头服务,新建文件 elasticsearch-svc.yaml,文件内容如下:

kind: Service
apiVersion: v1
metadata:
  name: elasticsearch
  namespace: kube-logging
  labels:
    app: elasticsearch
spec:
  selector:
    app: elasticsearch
  clusterIP: None
  ports:
    - port: 9200
      name: rest
    - port: 9300
      name: inter-node
  • 定义了一个名为 elasticsearchService,指定标签app=elasticsearch
  • 我们将 Elasticsearch StatefulSet 与此服务关联时,服务将返回带有标签 app=elasticsearchElasticsearch PodsDNS 记录,
  • 然后设置clusterIP=None,将该服务设置成无头服务
  • 最后,我们分别定义端口92009300,分别用于REST API 交互,以及用于节点间通信
  • 9200: REST API交互
  • 9300: 节点间通信

使用 kubectl 直接创建上面的服务资源对象:

$ kubectl create -f elasticsearch-svc.yaml
service/elasticsearch created
$ kubectl get services -n=logging
Output
NAME            TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None         <none>        9200/TCP,9300/TCP   26s

1-2 无头服务

.elasticsearch.logging.svc.cluster.local

现在我们已经为 Pod 设置了无头服务和一个稳定的域名 .elasticsearch.logging.svc.cluster.local,接下来我们通过 StatefulSet 来创建具体的 Elasticsearch 的 Pod 应用。

Kubernetes StatefulSet 允许我们为 Pod 分配一个稳定的标识和持久化存储,Elasticsearch 需要稳定的存储来保证 Pod 在重新调度或者重启后的数据依然不变,所以需要使用 StatefulSet 来管理 Pod

Why StatefulSet Pod

新建名为 elasticsearch-statefulset.yaml 的资源清单文件,首先粘贴下面内容:

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: es-cluster
  namespace: logging
spec:
  serviceName: elasticsearch
  replicas: 3
  selector:
    matchLabels:
      app: elasticsearch
  template:
    metadata:
      labels:
        app: elasticsearch

该内容中,我们定义了一个名为 es-clusterStatefulSet 对象,然后定义 serviceName=elasticsearch 和前面创建的 Service 相关联,这可以确保使用以下 DNS 地址访问 StatefulSet 中的每一个 Pod:es-cluster-[0,1,2].elasticsearch.logging.svc.cluster.local,其中[0,1,2]对应于已分配的 Pod 序号。

然后指定3个副本,将 matchLabels 设置为 app=elasticsearch,所以 Pod 的模板部分.spec.template.metadata.lables 也必须包含 app=elasticsearch 标签。

然后定义 Pod 模板部分内容:

...
  spec:
    containers:
    - name: elasticsearch
      image: docker.elastic.co/elasticsearch/elasticsearch-oss:6.4.3
      resources:
        limits:
          cpu: 1000m
        requests:
          cpu: 100m
      ports:
      - containerPort: 9200
        name: rest
        protocol: TCP
      - containerPort: 9300
        name: inter-node
        protocol: TCP
      volumeMounts:
      - name: data
        mountPath: /usr/share/elasticsearch/data
      env:
      - name: cluster.name
        value: k8s-logs
      - name: node.name
        valueFrom:
          fieldRef:
            fieldPath: metadata.name
      - name: discovery.zen.ping.unicast.hosts
        value: "es-cluster-0.elasticsearch,es-cluster-1.elasticsearch,es-cluster-2.elasticsearch"
      - name: discovery.zen.minimum_master_nodes
        value: "2"
      - name: ES_JAVA_OPTS
        value: "-Xms512m -Xmx512m"
  1. 该部分是定义 StatefulSet 中的 Pod,我们这里使用一个-oss后缀的镜像,该镜像是 Elasticsearch 的开源版本,如果你想使用包含X-Pack之类的版本,可以去掉该后缀
  2. 然后暴露了92009300两个端口,注意名称要和上面定义的 Service 保持一致。然后通过 volumeMount 声明了数据持久化目录,下面我们再来定义 VolumeClaims。最后就是我们在容器中设置的一些环境变量了:
  3. cluster.nameElasticsearch 集群的名称,我们这里命名成 k8s-logs
  4. node.name:节点的名称,通过metadata.name来获取。这将解析为 es-cluster-[0,1,2],取决于节点的指定顺序。
  5. discovery.zen.ping.unicast.hosts:此字段用于设置在 Elasticsearch 集群中节点相互连接的发现方法。我们使用 unicastdiscovery 方式,它为我们的集群指定了一个静态主机列表。由于我们之前配置的无头服务,我们的 Pod 具有唯一的 DNSes-cluster-[0,1,2].elasticsearch.logging.svc.cluster.local,因此我们相应地设置此变量。由于都在同一个 namespace 下面,所以我们可以将其缩短为es-cluster-[0,1,2].elasticsearch。要了解有关 Elasticsearch 发现的更多信息,请参阅 Elasticsearch 官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-discovery.html
  6. discovery.zen.minimum_master_nodes:我们将其设置为(N/2) + 1N是我们的群集中符合主节点的节点的数量。我们有3Elasticsearch 节点,因此我们将此值设置为2(向下舍入到最接近的整数)
  7. ES_JAVA_OPTS:这里我们设置为-Xms512m -Xmx512m,告诉JVM使用512 MB最小和最大堆。您应该根据群集的资源可用性和需求调整这些参数。要了解更多信息,请参阅设置堆大小的相关文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html

接下来添加关于 initContainer 的内容:

Why Init Container

...
    initContainers:
    - name: fix-permissions
      image: busybox
      command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
      securityContext:
        privileged: true
      volumeMounts:
      - name: data
        mountPath: /usr/share/elasticsearch/data
    - name: increase-vm-max-map
      image: busybox
      command: ["sysctl", "-w", "vm.max_map_count=262144"]
      securityContext:
        privileged: true
    - name: increase-fd-ulimit
      image: busybox
      command: ["sh", "-c", "ulimit -n 65536"]
      securityContext:
        privileged: true

这里我们定义了几个在主应用程序之前运行的 Init 容器,这些初始容器按照定义的顺序依次执行,执行完成后才会启动主应用容器。

  • 第一个名为 fix-permissions 的容器用来运行 chown 命令,将 Elasticsearch 数据目录的用户和组更改为1000:1000Elasticsearch 用户的 UID)。因为默认情况下,Kubernetesroot 用户挂载数据目录,这会使得 Elasticsearch 无法方法该数据目录,可以参考 Elasticsearch 生产中的一些默认注意事项相关文档说明:notes for production use and defaults
  • 第二个名为 increase-vm-max-map 的容器用来增加操作系统对 mmap 计数的限制,默认情况下该值可能太低,导致内存不足的错误,要了解更多关于该设置的信息,可以查看 Elasticsearch 官方文档说明: cm max map count
  • 最后一个初始化容器是用来执行 ulimit 命令增加打开文件描述符的最大数量的。
  • 此外 Elastisearch Notes for Production Use 文档还提到了由于性能原因最好禁用 swap,当然对于 Kubernetes 集群而言,最好也是禁用 swap 分区的。

现在我们已经定义了主应用容器和它之前运行的 Init Containers 来调整一些必要的系统参数,接下来我们可以添加数据目录的持久化相关的配置,在 StatefulSet 中,使用 volumeClaimTemplates 来定义 volume 模板即可:

现在我们已经定义了主应用容器和它之前运行的 Init Containers 来调整一些必要的系统参数,接下来我们可以添加数据目录的持久化相关的配置,在 StatefulSet 中,使用 volumeClaimTemplates 来定义 volume 模板即可:

...
  volumeClaimTemplates:
  - metadata:
      name: data
      labels:
        app: elasticsearch
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: es-data-db
      resources:
        requests:
          storage: 50Gi
  • 我们这里使用 volumeClaimTemplates 来定义持久化模板,Kubernetes 会使用它为 Pod创建 PersistentVolume
  • 设置访问模式为 ReadWriteOnce,这意味着它只能被 mount 到单个节点上进行读写,
  • 然后最重要的是使用了一个名为 es-data-dbStorageClass 对象,
  • 所以我们需要提前创建该对象,我们这里使用的 NFS 作为存储后端,所以需要安装一个对应的 provisioner 驱动,前面关于 Storage 的课程中已经和大家介绍过方法,NFS
  • 新建一个 elasticsearch-storageclass.yaml 的文件,文件内容如下:

elasticsearch-storageclass.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: es-data-db
provisioner: fuseim.pri/ifs  # 该值需要和 provisioner 配置的保持一致

最后,我们指定了每个 PersistentVolume 的大小为 50GB,我们可以根据自己的实际需要进行调整该值。最后,完整的 Elasticsearch StatefulSet 资源清单文件内容如下:

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: es-cluster
  namespace: logging
spec:
  serviceName: elasticsearch
  replicas: 3
  selector:
    matchLabels:
      app: elasticsearch
  template:
    metadata:
      labels:
        app: elasticsearch
    spec:
      containers:
      - name: elasticsearch
        image: docker.elastic.co/elasticsearch/elasticsearch-oss:6.4.3
        resources:
            limits:
              cpu: 1000m
            requests:
              cpu: 100m
        ports:
        - containerPort: 9200
          name: rest
          protocol: TCP
        - containerPort: 9300
          name: inter-node
          protocol: TCP
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
        env:
          - name: cluster.name
            value: k8s-logs
          - name: node.name
            valueFrom:
              fieldRef:
                fieldPath: metadata.name
          - name: discovery.zen.ping.unicast.hosts
            value: "es-cluster-0.elasticsearch,es-cluster-1.elasticsearch,es-cluster-2.elasticsearch"
          - name: discovery.zen.minimum_master_nodes
            value: "2"
          - name: ES_JAVA_OPTS
            value: "-Xms512m -Xmx512m"
      initContainers:
      - name: fix-permissions
        image: busybox
        command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
        securityContext:
          privileged: true
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
      - name: increase-vm-max-map
        image: busybox
        command: ["sysctl", "-w", "vm.max_map_count=262144"]
        securityContext:
          privileged: true
      - name: increase-fd-ulimit
        image: busybox
        command: ["sh", "-c", "ulimit -n 65536"]
        securityContext:
          privileged: true
  volumeClaimTemplates:
  - metadata:
      name: data
      labels:
        app: elasticsearch
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: es-data-db
      resources:
        requests:
          storage: 100Gi

现在直接使用 kubectl 工具部署即可:

$ kubectl create -f elasticsearch-storageclass.yaml
storageclass.storage.k8s.io "es-data-db" created
$ kubectl create -f elasticsearch-statefulset.yaml
statefulset.apps/es-cluster created

添加成功后,可以看到 logging 命名空间下面的所有的资源对象:

sts: StateSet

$ kubectl get sts -n logging
NAME         DESIRED   CURRENT   AGE
es-cluster   3         3         20h

$ kubectl get pods -n logging
NAME                      READY     STATUS    RESTARTS   AGE
es-cluster-0              1/1       Running   0          20h
es-cluster-1              1/1       Running   0          20h
es-cluster-2              1/1       Running   0          20h

$ kubectl get svc -n logging
NAME            TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None             <none>        9200/TCP,9300/TCP   20h

Pods 部署完成后,我们可以通过请求一个 REST API 来检查 Elasticsearch 集群是否正常运行。使用下面的命令将本地端口9200转发到 Elasticsearch 节点(如es-cluster-0)对应的端口:

$ kubectl port-forward es-cluster-0 9200:9200 --namespace=logging
Forwarding from 127.0.0.1:9200 -> 9200
Forwarding from [::1]:9200 -> 9200

Forward a local port to a port on the pod

$ curl http://localhost:9200/_cluster/state?pretty

正常来说,应该会看到类似于如下的信息:

{
  "cluster_name" : "k8s-logs",
  "compressed_size_in_bytes" : 348,
  "cluster_uuid" : "QD06dK7CQgids-GQZooNVw",
  "version" : 3,
  "state_uuid" : "mjNIWXAzQVuxNNOQ7xR-qg",
  "master_node" : "IdM5B7cUQWqFgIHXBp0JDg",
  "blocks" : { },
  "nodes" : {
    "u7DoTpMmSCixOoictzHItA" : {
      "name" : "es-cluster-1",
      "ephemeral_id" : "ZlBflnXKRMC4RvEACHIVdg",
      "transport_address" : "10.244.4.191:9300",
      "attributes" : { }
    },
    "IdM5B7cUQWqFgIHXBp0JDg" : {
      "name" : "es-cluster-0",
      "ephemeral_id" : "JTk1FDdFQuWbSFAtBxdxAQ",
      "transport_address" : "10.244.2.215:9300",
      "attributes" : { }
    },
    "R8E7xcSUSbGbgrhAdyAKmQ" : {
      "name" : "es-cluster-2",
      "ephemeral_id" : "9wv6ke71Qqy9vk2LgJTqaA",
      "transport_address" : "10.244.40.4:9300",
      "attributes" : { }
    }
  },
...

看到上面的信息就表明我们名为 k8s-logsElasticsearch 集群成功创建了3个节点:es-cluster-0es-cluster-1,和es-cluster-2,当前主节点是 es-cluster-0

2、创建 Kibana 服务

Elasticsearch 集群启动成功了,接下来我们可以来部署 Kibana 服务,新建一个名为 kibana.yaml 的文件,对应的文件内容如下:

apiVersion: v1
kind: Service
metadata:
  name: kibana
  namespace: logging
  labels:
    app: kibana
spec:
  ports:
  - port: 5601
  type: NodePort
  selector:
    app: kibana

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana
  namespace: logging
  labels:
    app: kibana
spec:
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
    spec:
      containers:
      - name: kibana
        image: docker.elastic.co/kibana/kibana-oss:6.4.3
        resources:
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        env:
          - name: ELASTICSEARCH_URL
            value: http://elasticsearch:9200
        ports:
        - containerPort: 5601

上面我们定义了两个资源对象,一个 ServiceDeployment,为了测试方便,我们将 Service 设置为了 NodePort 类型,Kibana Pod 中配置都比较简单,

唯一需要注意的是我们使用 ELASTICSEARCH_URL 这个环境变量来设置Elasticsearch 集群的端点和端口,直接使用 Kubernetes DNS 即可,此端点对应服务名称为 elasticsearch,由于是一个 headless service,所以该域将解析为3Elasticsearch PodIP 地址列表。

- name: ELASTICSEARCH_URL
  value: http://elasticsearch:9200

配置完成后,直接使用 kubectl 工具创建:

$ kubectl create -f kibana.yaml
service/kibana created
deployment.apps/kibana created

创建完成后,可以查看 Kibana Pod 的运行状态:

$ kubectl get pods --namespace=logging
NAME                      READY     STATUS    RESTARTS   AGE
es-cluster-0              1/1       Running   0          20h
es-cluster-1              1/1       Running   0          20h
es-cluster-2              1/1       Running   0          20h
kibana-7558d4dc4d-5mqdz   1/1       Running   0          20h
$ kubectl get svc --namespace=logging
NAME            TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None             <none>        9200/TCP,9300/TCP   20h
kibana          NodePort    10.105.208.253   <none>        5601:31816/TCP      20h

如果 Pod 已经是 Running 状态了,证明应用已经部署成功了,然后可以通过 NodePort 来访问 Kibana 这个服务,在浏览器中打开http://<任意节点IP>:31816即可,如果看到如下欢迎界面证明 Kibana 已经成功部署到了 Kubernetes集群之中。

Alt Image Text

3、部署 Fluentd

Fluentd 是一个高效的日志聚合器,是用 Ruby 编写的,并且可以很好地扩展。对于大部分企业来说,Fluentd 足够高效并且消耗的资源相对较少,另外一个工具Fluent-bit更轻量级,占用资源更少,但是插件相对 Fluentd 来说不够丰富,所以整体来说,Fluentd 更加成熟,使用更加广泛,所以我们这里也同样使用 Fluentd 来作为日志收集工具。

3-1 工作原理

Fluentd 通过一组给定的数据源抓取日志数据,处理后(转换成结构化的数据格式)将它们转发给其他服务,比如 Elasticsearch对象存储等等。Fluentd 支持超过300个日志存储和分析服务,所以在这方面是非常灵活的。主要运行步骤如下:

  • 首先 Fluentd 从多个日志源获取数据
  • 结构化并且标记这些数据
  • 然后根据匹配的标签将数据发送到多个目标服务去

Alt Image Text

3-2 配置

一般来说我们是通过一个配置文件来告诉 Fluentd 如何采集、处理数据的,下面简单和大家介绍下 Fluentd 的配置方法

日志源配置

比如我们这里为了收集 Kubernetes 节点上的所有容器日志,就需要做如下的日志源配置:

<source>

@id fluentd-containers.log

@type tail

path /var/log/containers/*.log

pos_file /var/log/fluentd-containers.log.pos

time_format %Y-%m-%dT%H:%M:%S.%NZ

tag raw.kubernetes.*

format json

read_from_head true

</source>

上面配置部分参数说明如下:

  • id:表示引用该日志源的唯一标识符,该标识可用于进一步过滤和路由结构化日志数据
  • typeFluentd 内置的指令,
  • tail表示 Fluentd 从上次读取的位置通过 tail 不断获取数据,
  • 另外一个是http表示通过一个 GET 请求来收集数据。
  • pathtail类型下的特定参数,告诉 Fluentd 采集/var/log/containers目录下的所有日志,这是 dockerKubernetes 节点上用来存储运行容器 stdout 输出日志数据的目录。
  • pos_file:检查点,如果 Fluentd 程序重新启动了,它将使用此文件中的位置来恢复日志数据收集。
  • tag:用来将日志源与目标或者过滤器匹配的自定义字符串,Fluentd 匹配源/目标标签来路由日志数据。

路由配置

上面是日志源的配置,接下来看看如何将日志数据发送到 Elasticsearch

<match **>

@id elasticsearch

@type elasticsearch

@log_level info

include_tag_key true

type_name fluentd

host "#{ENV['OUTPUT_HOST']}"

port "#{ENV['OUTPUT_PORT']}"

logstash_format true

<buffer>

@type file

path /var/log/fluentd-buffers/kubernetes.system.buffer

flush_mode interval

retry_type exponential_backoff

flush_thread_count 2

flush_interval 5s

retry_forever

retry_max_interval 30

chunk_limit_size "#{ENV['OUTPUT_BUFFER_CHUNK_LIMIT']}"

queue_limit_length "#{ENV['OUTPUT_BUFFER_QUEUE_LIMIT']}"

overflow_action block

</buffer>
  • match:标识一个目标标签,后面是一个匹配日志源的正则表达式,我们这里想要捕获所有的日志并将它们发送给 Elasticsearch,所以需要配置成**
  • id:目标的一个唯一标识符。
  • type:支持的输出插件标识符,我们这里要输出到 Elasticsearch,所以配置成 elasticsearch,这是 Fluentd 的一个内置插件。
  • log_level:指定要捕获的日志级别,我们这里配置成info,表示任何该级别或者该级别以上(INFOWARNINGERROR)的日志都将被路由到 Elsasticsearch
  • host/port:定义 Elasticsearch 的地址,也可以配置认证信息,我们的 Elasticsearch 不需要认证,所以这里直接指定 hostport 即可。
  • logstash_formatElasticsearch 服务对日志数据构建反向索引进行搜索,将 logstash_format 设置为trueFluentd 将会以 logstash 格式来转发结构化的日志数据。
  • BufferFluentd 允许在目标不可用时进行缓存,比如,如果网络出现故障或者 Elasticsearch 不可用的时候。缓冲区配置也有助于降低磁盘的 IO

3-3 安装

要收集 Kubernetes 集群的日志,直接用 DasemonSet 控制器来部署 Fluentd 应用,这样,它就可以从 Kubernetes 节点上采集日志,确保在集群中的每个节点上始终运行一个 Fluentd 容器。当然可以直接使用 Helm 来进行一键安装,为了能够了解更多实现细节,我们这里还是采用手动方法来进行安装。

首先,我们通过 ConfigMap 对象来指定 Fluentd 配置文件,新建 fluentd-configmap.yaml 文件,文件内容如下:

kind: ConfigMap
apiVersion: v1
metadata:
  name: fluentd-config
  namespace: logging
  labels:
    addonmanager.kubernetes.io/mode: Reconcile
data:
  system.conf: |-
    <system>
      root_dir /tmp/fluentd-buffers/
    </system>
  containers.input.conf: |-
    <source>
      @id fluentd-containers.log
      @type tail
      path /var/log/containers/*.log
      pos_file /var/log/es-containers.log.pos
      time_format %Y-%m-%dT%H:%M:%S.%NZ
      localtime
      tag raw.kubernetes.*
      format json
      read_from_head true
    </source>
    # Detect exceptions in the log output and forward them as one log entry.
    <match raw.kubernetes.**>
      @id raw.kubernetes
      @type detect_exceptions
      remove_tag_prefix raw
      message log
      stream stream
      multiline_flush_interval 5
      max_bytes 500000
      max_lines 1000
    </match>
  system.input.conf: |-
    # Logs from systemd-journal for interesting services.
    <source>
      @id journald-docker
      @type systemd
      filters [{ "_SYSTEMD_UNIT": "docker.service" }]
      <storage>
        @type local
        persistent true
      </storage>
      read_from_head true
      tag docker
    </source>
    <source>
      @id journald-kubelet
      @type systemd
      filters [{ "_SYSTEMD_UNIT": "kubelet.service" }]
      <storage>
        @type local
        persistent true
      </storage>
      read_from_head true
      tag kubelet
    </source>
  forward.input.conf: |-
    # Takes the messages sent over TCP
    <source>
      @type forward
    </source>
  output.conf: |-
    # Enriches records with Kubernetes metadata
    <filter kubernetes.**>
      @type kubernetes_metadata
    </filter>
    <match **>
      @id elasticsearch
      @type elasticsearch
      @log_level info
      include_tag_key true
      host elasticsearch
      port 9200
      logstash_format true
      request_timeout    30s
      <buffer>
        @type file
        path /var/log/fluentd-buffers/kubernetes.system.buffer
        flush_mode interval
        retry_type exponential_backoff
        flush_thread_count 2
        flush_interval 5s
        retry_forever
        retry_max_interval 30
        chunk_limit_size 2M
        queue_limit_length 8
        overflow_action block
      </buffer>
    </match>

上面配置文件中我们配置了 docker 容器日志目录以及 dockerkubelet 应用的日志的收集,收集到数据经过处理后发送到 elasticsearch:9200 服务。

然后新建一个 fluentd-daemonset.yaml 的文件,文件内容如下:

apiVersion: v1
kind: ServiceAccount
metadata:
  name: fluentd-es
  namespace: logging
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: fluentd-es
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
  - ""
  resources:
  - "namespaces"
  - "pods"
  verbs:
  - "get"
  - "watch"
  - "list"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: fluentd-es
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
  name: fluentd-es
  namespace: logging
  apiGroup: ""
roleRef:
  kind: ClusterRole
  name: fluentd-es
  apiGroup: ""
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd-es
  namespace: logging
  labels:
    k8s-app: fluentd-es
    version: v2.0.4
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  selector:
    matchLabels:
      k8s-app: fluentd-es
      version: v2.0.4
  template:
    metadata:
      labels:
        k8s-app: fluentd-es
        kubernetes.io/cluster-service: "true"
        version: v2.0.4
      # This annotation ensures that fluentd does not get evicted if the node
      # supports critical pod annotation based priority scheme.
      # Note that this does not guarantee admission on the nodes (#40573).
      annotations:
        scheduler.alpha.kubernetes.io/critical-pod: ''
    spec:
      priorityClassName: system-node-critical
      serviceAccountName: fluentd-es
      containers:
      - name: fluentd-es
        image: cnych/fluentd-elasticsearch:v2.0.4
        env:
        - name: FLUENTD_ARGS
          value: --no-supervisor -q
        resources:
          limits:
            memory: 500Mi
          requests:
            cpu: 100m
            memory: 200Mi
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: varlibdockercontainers
          mountPath: /data/docker/containers
          readOnly: true
        - name: config-volume
          mountPath: /etc/fluent/config.d
      nodeSelector:
        beta.kubernetes.io/fluentd-ds-ready: "true"
      tolerations:
      - key: node-role.kubernetes.io/master
        operator: Exists
        effect: NoSchedule
      terminationGracePeriodSeconds: 30
      volumes:
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /data/docker/containers
      - name: config-volume
        configMap:
          name: fluentd-config

我们将上面创建的 fluentd-config 这个 ConfigMap 对象通过 volumes 挂载到了 Fluentd 容器中,另外为了能够灵活控制哪些节点的日志可以被收集,所以我们这里还添加了一个 nodSelector 属性:

nodeSelector:
  beta.kubernetes.io/fluentd-ds-ready: "true"

意思就是要想采集节点的日志,那么我们就需要给节点打上上面的标签,比如我们这里3个节点都打上了该标签:

$ kubectl get nodes --show-labels
NAME      STATUS    ROLES     AGE       VERSION   LABELS
master    Ready     master    245d      v1.10.0   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/fluentd-ds-ready=true,beta.kubernetes.io/os=linux,kubernetes.io/hostname=master,node-role.kubernetes.io/master=
node02    Ready     <none>    165d      v1.10.0   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/fluentd-ds-ready=true,beta.kubernetes.io/os=linux,com=youdianzhishi,course=k8s,kubernetes.io/hostname=node02
node03    Ready     <none>    225d      v1.10.0   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/fluentd-ds-ready=true,beta.kubernetes.io/os=linux,jnlp=haimaxy,kubernetes.io/hostname=node03

另外由于我们的集群使用的是 kubeadm 搭建的,默认情况下 master 节点有污点,所以要想也收集 master 节点的日志,则需要添加上容忍:

tolerations:
- key: node-role.kubernetes.io/master
  operator: Exists
  effect: NoSchedule

另外需要注意的地方是,我这里的测试环境更改了 docker 的根目录:

$ docker info
...
Docker Root Dir: /data/docker
...

所以上面要获取 docker 的容器目录需要更改成/data/docker/containers,这个地方非常重要,当然如果你没有更改 docker 根目录则使用默认的 /var/lib/docker/containers 目录即可。

分别创建上面的 ConfigMap 对象和 DaemonSet

$ kubectl create -f fluentd-configmap.yaml
configmap "fluentd-config" created
$ kubectl create -f fluentd-daemonset.yaml
serviceaccount "fluentd-es" created
clusterrole.rbac.authorization.k8s.io "fluentd-es" created
clusterrolebinding.rbac.authorization.k8s.io "fluentd-es" created
daemonset.apps "fluentd-es" created

创建完成后,查看对应的 Pods 列表,检查是否部署成功:

$ kubectl get pods -n logging
NAME                      READY     STATUS    RESTARTS   AGE
es-cluster-0              1/1       Running   0          1d
es-cluster-1              1/1       Running   0          1d
es-cluster-2              1/1       Running   0          1d
fluentd-es-2z9jg          1/1       Running   1          35s
fluentd-es-6dfdd          1/1       Running   0          35s
fluentd-es-bfkg7          1/1       Running   0          35s
kibana-7558d4dc4d-5mqdz   1/1       Running   0          1d

Fluentd 启动成功后,我们可以前往 KibanaDashboard 页面中,点击左侧的Discover,可以看到如下配置页面:

Alt Image Text

在这里可以配置我们需要的 Elasticsearch 索引,前面 Fluentd 配置文件中我们采集的日志使用的是 logstash 格式,这里只需要在文本框中输入logstash-*即可匹配到 Elasticsearch 集群中的所有日志数据,然后点击下一步,进入以下页面:

Alt Image Text

在该页面中配置使用哪个字段按时间过滤日志数据,在下拉列表中,选择@timestamp字段,然后点击Create index pattern,创建完成后,点击左侧导航菜单中的Discover,然后就可以看到一些直方图和最近采集到的日志数据了:

Alt Image Text

3-4 测试

现在我们来将上一节课的计数器应用部署到集群中,并在 Kibana 中来查找该日志数据。

新建 counter.yaml 文件,文件内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: counter
spec:
  containers:
  - name: count
    image: busybox
    args: [/bin/sh, -c,
            'i=0; while true; do echo "$i: $(date)"; i=$((i+1)); sleep 1; done']

Pod 只是简单将日志信息打印到 stdout,所以正常来说 Fluentd 会收集到这个日志数据,在 Kibana 中也就可以找到对应的日志数据了,使用 kubectl 工具创建该 Pod

$ kubectl create -f counter.yaml

Pod 创建并运行后,回到 Kibana Dashboard 页面,在上面的Discover页面搜索栏中输入kubernetes.pod_name:counter,就可以过滤 Pod 名为 counter 的日志数据:

Alt Image Text

我们也可以通过其他元数据来过滤日志数据,比如 您可以单击任何日志条目以查看其他元数据,如容器名称,Kubernetes 节点,命名空间等。

到这里,我们就在 Kubernetes 集群上成功部署了 EFK ,要了解如何使用 Kibana 进行日志数据分析,可以参考 Kibana 用户指南文档:https://www.elastic.co/guide/en/kibana/current/index.html

当然对于在生产环境上使用 Elaticsearch 或者 Fluentd,还需要结合实际的环境做一系列的优化工作,本文中涉及到的资源清单文件都可以在https://github.com/cnych/kubernetes-learning/tree/master/efkdemo找到。

https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes