跳转至

第四节 深入浅出索引

索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。同样,对于数据库的表而言,索引其实就是它的“目录”。

1、索引的常见模型

索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。

三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树

1-1 哈希表

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的键即 key,就可以找到其对应的值即 Value。

哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。

多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表

Key value都放在链表里面,用key算出的哈希值放在数组里。当需要用key查value时,先算出哈希值,找到指定数组,再用key去遍历后面的链表,因为链表中同时包含key value,就可以找到指定的value了。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

Alt Image Text

  • User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。
  • 假设,这时候你要查 ID_card_n2 对应的名字是什么,处理步骤就是:
  • 首先,将 ID_card_n2 通过哈希函数算出 N
  • 然后,按顺序遍历,找到 User2。

需要注意的是,图中四个 ID_card_n 的值并不是递增的,这样做的好处是增加新的 User 时速度会很快,只需要往后追加。

但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

你可以设想下,如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍

所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。

而有序数组在等值查询和范围查询场景中的性能就都非常优秀。

1-2 有序数组

还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,

Alt Image Text

假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 ID_card_n2 对应的名字,用二分法就可以快速得到,这个时间复杂度是 O(log(N))

数组已排序时用二分法查询最快

同时很显然,这个索引结构支持范围查询。

你要查身份证号在[ID_card_X, ID_card_Y]区间的 User,可以先用二分法找到 ID_card_X(如果不存在ID_card_X,就找到大于 ID_card_X 的第一个 User),然后向右遍历,直到查到第一个大于 ID_card_Y 的身份证号,退出循环。

  • 如果仅仅看查询效率,有序数组就是最好的数据结构了。
  • 但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

有序数组索引只适用于静态存储引擎

有序数组不管是等值查找和范围查找都很优秀,可是有序数组不适合更新删除增加。比较适合静态数组静态数据。

1-3 二叉搜索树

Alt Image Text

二叉搜索树的特点是:

父节点左子树所有结点的值小于父节点的值,右子树所有结点的值大于父节点的值。

这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N))

当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。

查询和更新的时间复杂度都是O(logN)

。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

为什么数据库存储使用b+树 而不是二叉树,因为二叉树树高过高,每次查询都需要访问过多节点,即访问数据块过多,而从磁盘随机读取数据块过于耗时

你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。

以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。 N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

在 MySQL 中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。

2、InnoDB 的索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表

又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。

每一个索引在 InnoDB 里面对应一棵 B+ 树。

假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引。

mysql> create table T(
id int primary key, 
k int not null, 
name varchar(16),
index (k)) engine=InnoDB;

表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下。

Alt Image Text

索引类型分为主键索引和非主键索引

主键索引的叶子存该行的数据,非主键索引的叶子结点保存的是主键索引的引用。

  • 主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。
  • 非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

key:主键的值,value:整行数据。 普通列索引: key:索引列的值, value:主键的值。

基于主键索引和普通索引的查询有什么区别?

  • 如果语句是 select * from T where ID=500,即主键查询方式则只需要搜索 ID 这棵 B+ 树
  • 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。

普通索引或者又叫二级索引查询方式: 需要先查二级索引树,查到id,然后根据id查询主键索引树

3、索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。

以上面这个图为例,如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置

而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

  • 除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。
  • 当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

小结: 一个数据页满了,按照B+Tree算法,新增加一个数据页,叫做页分裂,会导致性能下降。空间利用率降低大概50%。当相邻的两个数据页利用率很低的时候会做数据页合并,合并的过程是分裂过程的逆过程。

自增主键防止页分裂,逻辑删除并非物理删除防止页合并

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的:

NOT NULL PRIMARY KEY AUTO_INCREMENT

  • 插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值。
  • 自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

可以自己根据业务需要,自己生成唯一的自增的ID,这样既可以能满足业务需要,又能保证插入的性能。 生成唯一ID的算法:雪花算法等。

从性能和存储空间方面考量,自增主键往往是更合理的选择。

由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

每一张表其实就是好几棵B+树,树结点的key值就是某一行的主键,value是该行的其他数据。新建索引就是新增一个B+树,查询不走索引就是遍历主B+树。

4、思考题1

对于上面例子中的 InnoDB 表 T,如果你要重建索引 k,你的两个 SQL 语句可以这么写:

alter table T drop index k;
alter table T add index(k);

如果你要重建主键索引,也可以这么写:

alter table T drop primary key;
alter table T add primary key(id);

我的问题是,,通过两个 alter 语句重建索引 k,以及通过两个 alter 语句重建主键索引是否合理。

  • 重建索引 k 的做法是合理的,可以达到省空间的目的。
  • 但是,重建主键的过程不合理。不论是删除主键还是创建主键,都会将整个表重建。

5、覆盖索引

在下面这个表 T 中,如果我执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?

mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0, 
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;

insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');

Alt Image Text

现在,我们一起来看看这条 SQL 查询语句的执行流程:

  1. 在 k 索引树上找到 k=3 的记录,取得 ID = 300;
  2. 再到 ID 索引树查到 ID=300 对应的 R3;
  3. 在 k 索引树取下一个值 k=5,取得 ID=500;
  4. 再回到 ID 索引树查到 ID=500 对应的 R4;
  5. 在 k 索引树取下一个值 k=6,不满足条件,循环结束。

回到主键索引树搜索的过程,我们称为回表

可以看到,这个查询过程读了 k 索引树的 3 条记录(步骤 1、3 和 5),回表了两次(步骤 2 和 4)。

在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。

如果执行的语句是

select ID from T where k between 3 and 5

这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表

也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引

需要注意的是,在引擎内部使用覆盖索引在索引 k 上其实读了三个记录,R3~R5(对应的索引 k 上的记录项),但是对于 MySQL 的 Server 层来说,它就是找引擎拿到了两条记录,因此 MySQL 认为扫描行数是 2。

在一个市民信息表上,是否有必要将身份证号和名字建立联合索引?

一般不建议使用业务相关字段作为主键,即使其具有唯一性特性(如身份证)。因为,当业务变更(如身份证升位),就会带来灾难。


CREATE TABLE `tuser` (
  `id` int(11) NOT NULL,
  `id_card` varchar(32) DEFAULT NULL,
  `name` varchar(32) DEFAULT NULL,
  `age` int(11) DEFAULT NULL,
  `ismale` tinyint(1) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `id_card` (`id_card`),
  KEY `name_age` (`name`,`age`)
) ENGINE=InnoDB

我们知道,身份证号是市民的唯一标识

也就是说,如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?

id_cardname 建立联合索引后,name 的值也会被保存在id_card索引树的节点上,这样根据给定id_card的值找到的对应行时,就可以直接获取到name了,而不需要拿着对应的主键再进行回表操作。

如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。

在联合索引上使用,也可以避免回表。这个也可以应用到项目开发中。

当然,索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了

6、最左前缀原则

看到这里你一定有一个疑问,如果为每一种查询都设计一个索引,索引是不是太多了。

B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位记录。

为了直观地说明这个概念,我们用(name,age)这个联合索引来分析。

Alt Image Text

联合索引先根据第一个字段排序,如果第一个字段有相同的,就按照第二个字段排序,注意,这里仅仅有相同的第一个字段情况下,才会根据第二个字段排序。

  • 当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到 ID4,然后向后遍历得到所有需要的结果。
  • 如果你要查的是所有名字第一个字是“张”的人,你的 SQL 语句的条件是"where name like ‘张 %’"。这时,你也能够用上这个索引,查找到第一个符合条件的记录是 ID3,然后向后遍历,直到不满足条件为止。

like aa%后模糊查询索引有效,like %aa模糊查询索引无效

  • 不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符。

在建立联合索引的时候,如何安排索引内的字段顺序。

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了

第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

所以我们要为高频请求创建 (身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。

如果既有联合查询,又有基于 a、b 各自的查询呢?查询条件里面只有 b 的语句,是无法使用 (a,b) 这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护 (a,b)、(b) 这两个索引。

这时候,我们要考虑的原则就是空间了。比如上面这个市民表的情况,name 字段是比 age 字段大的 ,那我就建议你创建一个(name,age) 的联合索引和一个 (age) 的单字段索引。

(a,b)、(b) 还是 (b,a)、(a)?考虑空间,字段长的只建立一次,短的建立两次。

7、索引下推

那些不符合最左前缀的部分,会怎么样呢?

我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是 10 岁的所有男孩”。那么,SQL 语句是这么写的

mysql> select * from tuser where name like '张%' and age=10 and ismale=1;

根据前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录 ID3。

在 MySQL 5.6 之前,只能从 ID3 开始一个个回表。到主键索引上找出数据行,再对比字段值。

MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数

无索引下推执行流程

Alt Image Text

在 (name,age) 索引里面我特意去掉了 age 的值,这个过程 InnoDB 并不会去看 age 的值,只是按顺序把“name 第一个字是’张’”的记录一条条取出来回表。因此,需要回表 4 次。

索引下推执行流程

Alt Image Text

  • 每一个虚线箭头表示回表一次。

InnoDB 在 (name,age) 索引内部就判断了 age 是否等于 10,对于不等于 10 的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID4、ID5 这两条记录回表取数据判断,就只需要回表 2 次。

8、思考题2

有这么一个表,表结构定义类似这样的:


CREATE TABLE `test` (
  `a` int(11) NOT NULL,
  `b` int(11) NOT NULL,
  `c` int(11) NOT NULL,
  `d` int(11) NOT NULL,
  PRIMARY KEY (`a`,`b`),
  KEY `c` (`c`),
  KEY `ca` (`c`,`a`),
  KEY `cb` (`c`,`b`)
) ENGINE=InnoDB;

由于历史原因,这个表需要 a、b 做联合主键

既然主键包含了 a、b 这两个字段,那意味着单独在字段 c 上创建一个索引,就已经包含了三个字段了呀,为什么要创建“ca”“cb”这两个索引?

是因为他们的业务里面有这样的两种语句:

select * from test where c=N order by a limit 1;
select * from test where c=N order by b limit 1;

为了这两个查询模式,这两个索引是否都是必须的?为什么呢?

答案: 对于二级索引C,会默认和主键做联合索引。所以索引c的排序为cab,索引cb的排序顺序为cba。所以,结论是 ca 可以去掉,cb 需要保留。